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Abstract	  
	  
A mix of message passing interface (MPI) and multithreading parallel scheme has been 

implemented in the AutoDock Vina molecular docking program. The resulting program, 

named VinaLC, has been tested on the petascale high performance computing (HPC) 

machines at Lawrence Livermore National Laboratory. To exploit the typical cluster-type 

supercomputers, thousands of docking calculations were dispatched by the master process to run 

simultaneously on thousands of slave processes, where each docking calculation takes one slave 

process on one node, and within the node each docking calculation runs via multithreading on 

multiple CPU cores and shared memory. Input and output of program and the data handling 

within the program have been carefully designed to deal with large databases and ultimately 

achieve high performance computing on a large number of CPU cores. Parallel performance 

analysis of the VinaLC program shows that the code can scale up to more than 15K CPUs with a 

very low overhead cost of 3.94%.  One million flexible compounds docking calculations took 

only 1.4 hours to finish on about 15K CPUs.  The docking accuracy of VinaLC has been 

validated against the DUD data set by the re-docking of the X-ray ligands and an enrichment 

study. The re-docking of the X-ray ligands have shown that 64.4% of the top scoring poses with 

RMSD values under the 2.0 Å cutoff. The program has been demonstrated to have good 

enrichment performance on 70% targets in the DUD data set. An analysis of the enrichment 

factors calculated at various percentages of the screening database indicates VinaLC has very 

good early recovery of actives.  	  
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Introduction 
 
Structure-based high throughput virtual screening has been widely applied in the early stage of 

drug discovery because of its low cost, high efficiency, and some crucial successes in recent 

years1-3. Molecular docking based virtual screening involves a target protein structure, either 

experimentally solved or computationally modeled, and a library of small molecules that fit into 

the active site of this target to estimate binding affinity. About 10% of the human genome, 

containing ~30,000 genes that express proteins able to bind drug-like molecules, is estimated to 

be druggable4. In the past few years the number of protein structures publicly available has 

increased rapidly, not to mention many other structures held by the pharmaceutical companies. 

The Research Collaboratory for Structural Biology (RCSB) database5 currently has more than 

80K protein structures deposited in the database, with thousands being added each year. In 

addition, the chemical space of small molecules is enormous and the number of drug-like 

compounds has been estimated to be 1060.6 The ZINC database7, a free database of commercially 

available compounds for virtual screening, has more than 30 million entries up to date. Millions 

of potential drug candidates are required to be screened against the ever-increasing number of the 

druggable biological targets, which makes it an urgent task to develop fast and accurate 

screening techniques that can deal with massive amounts of data. 

Various docking programs, either open-source (e.g. DOCK8,9, AutoDock10,11) or commercially 

available (e.g. FlexX12, GLIDE13,14, GOLD15), have been developed and have evolved in the last 

few decades. Molecular docking is basically a conformational sampling procedure to identify the 

best binding pose of a small molecule fitting into a protein target16. The conformational sampling 

procedure is usually based on Monte Carlo simulations, simulated annealing, genetic algorithm, 

or other sampling methods. The sampled poses are then evaluated with various scoring functions 
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and ranked according to their scores17. The types of scoring functions can be divided into four 

categories: molecular mechanics force-field method, empirical scoring functions, quantum 

mechanical method, and knowledge-based potentials18,19. Docking programs can employ a 

combination of different sampling techniques and scoring functions to achieve certain accuracies 

at various speeds. Most docking programs were originally designed to run on personal computers 

or small workstations. The scalability of these programs often becomes poor when using a large 

number of CPU cores. Some commercial programs even set tokens to limit the number of jobs 

that can be run in parallel.  

With the growth power of supercomputers, efforts have been made to parallelize the docking 

programs and to scale up to a large number of CPU cores. There are several ways to implement a 

parallel docking program, running on high performance computing (HPC) machines. The first 

approach is to launch parallel jobs through a job dispatching system, e.g. portable batch system 

(PBS)20 is a popular job scheduler on HPC machines. DOVIS 2.0 is a parallel docking program 

based on AutoDock 421 and relies mainly on the job queuing system to run the job in parallel22. 

For scale up to 256 CPUs, DOVIS 2.0 has reasonable efficiency. However, the major bottleneck 

for this approach is that the communication between individual jobs must use intermediate files, 

which increases the I/O activity, slows down the calculation, and limits the maximum number of 

CPUs that can be used simultaneously. The second approach is to run the program by using 

cloud computing23. Opal web service24 provides AutoDock on a cloud platform. Recently, 

Schrödinger tested virtual screening of 21 million compounds using their docking program on 

the Amazon cloud platform (Schrödinger website news). The docking calculation scaled from 0 

up to about 50,000 steadily over three hours. The shortcoming of cloud computing is that it takes 

time to reach optimal scalability, which can result in a waste of CPU recourse at the beginning. 
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The third approach is to utilize GPU processors. Recently, large-scale GPU clusters and 

GPU/CPU hybrid clusters are gaining popularity in the scientific computing community25. 

However, their deployment and production use are associated with several challenges in terms of 

the application development process, job scheduling, and resource management. Yang and co-

workers26 have leveraged the computational power of GPUs to accelerate DOCK6's27 Amber28 

scoring with the NVIDIA CUDA platform29. Their results show that a single GeForce 9800 GT 

GPU-based docking program achieves a 6.5x speedup with respect to the original version 

running on an AMD dual-core CPU. Korb and co-workers25 developed a GPU-based protein-

ligand docking program PLANTS, which has speedup factors up to 10x on a NVIDIA GeForce 

8800 GTX GPU. Currently, most GPU-based docking programs use a single GPU processor so 

that their speedup factors are usually within 10, as compared to a single CPU. The fourth 

approach is to use a message passing interface (MPI) to parallelize the application for standard 

CPU clusters, which is still the mainstream of the high performance computing. An MPI-based 

implementation docking program based on Autodock 4 (Autodock4.lga.MPI) has been 

developed by Collignon et. al.30. It scales up to 8192 CPUs with a maximal overhead of 16.3%, 

two thirds of which are due to input/output operations, and one third originates from MPI 

operations. The relative high overhead is due to the usage of intermediate files. In 24 hours, on 

8192 high-performance computing CPUs, 300K small flexible compounds or 11 million rigid 

compounds can be docked to a single rigid protein. 

AutoDock Vina is a molecular docking program recently developed by Trott and Olson31 that 

achieves an approximately two orders of magnitude speed-up compared with AutoDock 4,21 

developed at the same lab. Since its creation, AutoDock Vina has been widely deployed in 

molecular docking studies32-35. It also significantly improves the accuracy of the binding mode 
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predictions compared to AutoDock 436. Further speed-up is achieved by using multithreading of 

docking pose generation on multicore CPU processor. AutoDock Vina calculates the grid maps 

on-the-fly, which makes it more user-friendly as compared to AutoDock 4. As a new generation 

of docking software from Olson’s Lab, Vina uses a totally different sampling algorithm and 

scoring function from that of AutoDock 4. Vina employs a Monte Carlo based sampling 

algorithm named “iterated local search global optimizer” similar to the method developed by 

Abagyan et. al.37, which is a succession of steps consisting of a mutation and then a local 

optimization step, with each step being accepted according to the Metropolis criterion. The Vina 

scoring function uses empirical terms that account for steric forces, attraction, repulsion, 

hydrophobicity, hydrogen bonding, and molecular flexibility, which allows rapid assessment of 

docking poses. Due to its high accuracy with fast computing speed, Vina is an ideal candidate 

code to be parallelized and run on HPC. 

Here, we implemented an MPI and multithreading hybrid parallel scheme in the Vina molecular 

docking program. The resulting program is named VinaLC, where LC stands for Livermore 

Computing. The parallel performance of the VinaLC program was investigated on several 

different types of supercomputers, including petascale HPC machines. Furthermore, we evaluate 

VinaLC’s accuracy by examining enrichment and pose quality. The DUD dataset was used to 

compare VinaLC with benchmark studies performed using other docking programs38.   
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Computational Details 
 

Mixed MPI and multithreading programming 
 
In order to exploit the computing resource of HPC machines, the original code of Vina (version 

1.1.231) was modified using MPI and multithreading hybrid parallel programming. The original 

Vina is a multithreading C++ program using the Boost thread library39, which runs on shared 

memory and is hard to scale up to larger numbers of CPUs. Nowadays, a typical supercomputer 

consists of a large number of nodes (1000s to 100,000s). Within a node several CPU cores share 

memory, and between the nodes the interconnection allows programs on each node to interact 

with each other in a distributed memory system, which is usually slower than within the node. 

Thus, a multithreading parallel program that uses distributed memory lacks efficiency when 

running on HPC. It will be more efficient to deploy a message-passing multiprocess. Therefore, 

we use a mixed MPI and multithreading scheme in the parallel program (Figure 1), where within 

the node multithreading is used, and among different nodes an MPI parallel scheme is applied.  

MPI Scheme 
 
A careful design MPI scheme has been implemented in the VinaLC program so that it is able to 

achieve high scalability with low overhead. The calculating time for each docking calculation 

could be significantly different due to the differences among ligands, receptors, and the grid box 

sizes in the active site of receptor. Distributing docking calculations evenly on each MPI process 

will affect the MPI load balance because some processes will finish docking calculations early 

and then idle, waiting for other processes to complete their calculations. To keep every process 

busy and reduce the idling time, the program employs a master-slave MPI scheme as illustrated 

in the Figure 2.  The master process is shown on the left side, and the slave processes are on the 

right. The MPI calls are designated by the solid-color boxes, paired in the same color, and 
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connected by the arrows. The directions of the arrows show the direction of the data flow for 

each pair of MPI calls. The light-grey boxes represent loops in the program. The master process 

has three ‘for loops’ and each slave process has one infinite ‘while loop’. For the master process, 

the first ‘for loop’ is a job loop, which goes through every combination of the receptor and 

ligand. Two pairs of MPI send/recv calls, colored in blue and green respectively, control the job 

flow. The free slave process sends its MPI rank to the master process. The master process tries to 

receive the rank of any free slave process by using MPI_Any_Source tag. If there are still 

docking calculations in the queue, the master process sends an unfinished job flag to the free 

slave process so that the infinite ‘while loop’ keeps running. All the input and output data are 

handled by the master process. The input data are packed into one data package so that only one 

pair of MPI send/recv calls is required to reduce the MPI overhead, so does output data. The 

master process sends the input data required for the docking calculation to the slave process. 

After receiving the input data, the slave process performs the docking calculation. The slave 

process sends the output data back to the master process when it finishes the assigned calculation 

from the master process. Only after the master process has assigned each slave process with a 

docking calculation will the master process start collecting the output data. The second ‘for loop’ 

is used to collect the data. If the size of the jobs is larger than the number of slave processes, the 

size of the loop equals the number of slave processes. If not, the size of the loop equals to the 

size of the jobs. The master process will garner the output data from any slave process by using 

MPI_Any_Source tag. Once the output data from the slave process is collected, then the master 

process will give that slave process another job. The third ‘for loop’ in the master process sends a 

finished job flag to free the slave processes. The slave process breaks the infinite ‘while loop’ 

after receive the job flag. The MPI run finishes after the third ‘for loop’. By implementing such a 
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master-slave MPI scheme, the master is in charge of job dispatching, input, and output while the 

slave processes are kept busy by running individual docking calculation until all the calculations 

are finished.  

Code Implementation 
 

The code implementation includes MPI parallel, input/output, data handling, and file formats. 

The original Vina code was converted to a single complex docking function, and an MPI 

program scaffold was built on top of this docking function. The MPI part of the code is in charge 

of the docking task dispatching, and the docking function performs individual docking 

calculations. The code was re-designed so that the master process will perform the input and 

output operations. The code for parsing input files was converted to a function so that it can be 

called by master process. The raw input and output data are stored in two C++ structs, 

respectively, so that only two pairs of MPI send/recv calls are required to communicate the data 

between the master and slave processes. The input data struct contains the information about the 

ligand and receptor, number of threads, docking grid, exhaustiveness of the conformer searching, 

and other options required for the docking calculation. The original Vina code parses the ligand 

and receptor PDBQT files and calculates the grids on the fly. Our parallel program has to handle 

thousands to millions ligand/receptor structures. To make it simple, the ligand and receptor 

structures are saved in several large multi-structure PDBQT files. For example, more than one 

million ZINC ligand structures can be saved in 40 multi-structure PDBQT files. Each PDBQT 

files contains about 25K ligands. Two ‘for loops’ are involved when the master process reads in 

the input structures. The outer loop loops through the receptor PDBQT file list, while the nested 

inner loop loops through the ligand PDBQT file list. After reading in one ligand structure, one 

docking calculation is launched on slave process by master. The master process reads in the 
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structure files of the ligand and receptor structures as a string stream and saves them in large 

character buffers/arrays as raw data in the input data struct. It also calculates the docking girds 

and stores them as arrays in the input data struct. The input data is passed from the master 

process to the designated slave process. The slave process will populate the grids from the input 

data and parses the raw ligand and receptor data into objects defined in VinaLC. The output data 

struct contains two character buffers to save the log and docking poses respectively. The original 

Vina logs are re-directed to a string stream by the slave process. The string stream is saved in the 

character buffer in the output data struct. Also, instead of writing an output file, the docking 

poses are piped into a string stream and then store in the character buffer in the output data 

struct. The output data struct is passed to the master process by the slave process. The master 

process saves the entire log and all docking poses into two GZip files to save the disk space. The 

GZip file for nine million docking poses is about 3 Gig bytes, which is easier to maintain than 

saving docking poses in millions of individual files. Many screen outputs that were in the 

original Vina program, such as progress bars, thread messages, job messages, etc, have been 

disabled to reduce the I/O activity. 

VinaLC has also been further optimized from the original version in many other aspects. 

Computational expensive calculations have been replaced with cheaper and simpler algorithms 

without sacrificing accuracy or precision. For example, many “sqrt” functions, which calculate 

the square root of a number, have been removed from the code. The algorithms that involve these 

functions have been changed to alternate methods.  

Benchmarking Data Sets 
 

Benchmarking data sets have been carefully selected to carry out parallel performance analysis 

and docking accuracy validation. Two benchmarking data sets, ZINC7 and DUD (a Directory of 
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Useful Decoys)38 databases, were chosen in this study. ZINC is a free database of commercially 

available compounds for virtual screening.  ZINC contains over 30 million purchasable 

compounds. We randomly selected 1 million compounds from the ZINC database to test the 

efficiency and scalability of VinaLC. The receptor for the ligand docking is the Thermus 

thermophilus gyrase B ATP-binding domain (PDB ID: 1KIJ). The grid box was generated at the 

center of the receptor active site with a cubic size of 106×106×106 with grid spacing of 0.375 Å. 

To benchmark the VinaLC docking accuracy calculation, the DUD database was selected 

because DUD is both a diverse and difficult database for structure-based virtual screening.  DUD 

contains 2950 annotated ligands for 40 diverse targets and about 36 decoy molecules for each 

annotated ligand. A complete list of 40 targets and their full names can be found in the 

supporting information or the original DUD paper38. To avoid bias in the dataset, decoy 

molecules were assembled to physically resemble ligands but are chemically distinct from other 

molecules38. Thus, ligand enrichment is not simply a separation of gross features but rather 

reflects the ability to separate chemical features such that decoy molecules are unlikely binders. 

Although there are known issues and limitations within the DUD40 database, the diversity of the 

set with the decoys challenges any docking code. DUD dataset, acting as a standard docking 

dataset, has been widely applied to benchmark various molecular docking programs40-42. In this 

study, DUD dataset was used to benchmark our VinaLC so that it can be compared with other 

programs. The ligand, decoy and receptor structures were obtained from the DUD website43. The 

SDF and PDB formats of the structure files were converted to PDBQT format using 

MGLTOOLS44. The grid box dimensions were set the same as that of Huang, et. al.38. The grid 

spacing was set to be 0.333 Å. 
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There are many ways to gauge the enrichment performance of the program. Enrichment factor 

(EF)14,41,45 is one of methods that was used to measure the virtual screening performance of the 

VinaLC docking program.  

 , 

where activessampled is the number of actives found at x% of the screened database, activestotal is 

the number of total actives in the database, Nsampled is the number of compounds at x% of 

database, and Ntotal is the number of total compounds in the database. The enrichment factor has 

several deficiencies because it largely depends on the composition of the data set and is not 

stable at low x%. Thus, in this study we used the average value of EF calculated from 40 targets 

in the DUD data set in order to eliminate the variability of data composition and reduce the 

uncertainty of the value at low x%. 

Input for Parallel VinaLC 

The input for VinaLC employs a command-line style. The program will take the input 

parameters from either an input file or command line options. A typical command line to run 

VinaLC using the SLURM46 job scheduler follows: 

 

srun -N1284 –n1284 –c12 ./vinalc --recList recList.txt --ligList ligList.txt --geoList geoList.txt --

exhaustiveness 12 

 

This command line tells the SLURM job scheduler to run the calculation on 1284 nodes, launch 

1284 processes simultaneously, and use 12 CPUs for each process. VinaLC reserves the MPI 

rank of 0 for the master process and treats the rest as slave process. The process automatically 

! 

EF x% =
Activessampled
Activestotal

Ntotal

Nsampled
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detects the number of the CPUs and then launches the 12 threads for each docking calculation. 

VinaLC reads in lists (recList.txt and ligList.txt) for the receptor and ligand PDBQT files 

together with a list (geoList.txt) for the geometry of the receptor grid boxes. The option of 

“exhaustiveness” specifies the number of the Monte Carlo simulations to be run for each docking 

calculation and its default value is 8. Other options and their default values can be printed out by 

VinaLC if the user runs the program with option flag of “--help”. 

The VinaLC docking program has demonstrated its portability by running on various types of 

supercomputers. It has been ported to several different kinds HPC machines at Lawrence 

Livermore National Laboratory, including Linux clusters of Intel Xeon processors, Linux 

clusters of AMD Opteron processors, and a new IBM 20-petaflop supercomputer with BG/Q 

architecture47. The code was extensively tested on a Linux cluster of Intel Xeon processors for 

parallel processing, composed of 1,944 nodes, in which there are 1865 total compute nodes. 

Nodes are Intel Xeon 5660 dual-socket 6-core nodes, each with a total of 12 cores (2.8 GHz) and 

24 GB of memory. Between the nodes, the InfiniBand QDR (quad data rate)48 is the high-speed 

interconnect, which is necessary for the code to link to the MVAPICH library49, a MPI library 

particularly tuned for the InfiniBand interconnect. The maximum number of nodes allowed for a 

batch job is 1284 nodes (15,408 cores).	   

 

 
 
  



	   14	  

Results and Discussion 
	  
Parallel VinaLC scales to a large set of cpus with low overhead 

Parallel Scalability. The scalability of MPI and multithreading mixed parallel VinaLC program 

has been studied on a Linux cluster of Intel Xeon processors. The ligands in the test case were 

selected from the ZINC database, in which the first 100K compounds were docked into the 

active site of Thermus thermophilus gyrase B ATP-binding domain. The test case was calculated 

on 600, 1200, 2400, 6000, 12000, and 15408 CPU cores, respectively. The MPI wall time for the 

docking calculations decreases drastically as the CPU cores increases. As shown in Figure 3a, 

the MPI wall time cuts by almost half each time the number of the CPU cores doubles. The 

average CPU time of each docking calculation only changes from 82.98 to 89.69 seconds, when 

number of CPU cores increases from 600 to 15408 (Figure 3b). The trend line of the average 

CPU time deviates only slightly from the ideal average CPU time, as shown by dashed line.  As 

shown in the Figure 3c, the factors of speed up are almost identical to the ideal values when the 

number of CPU cores is less than 6000 while The factors of speed up are only slightly less than 

those of ideal ones when the number of CPU cores is larger than 6000.  The average CPU time 

per docking run and the speed up plots both suggest that VinaLC scales very well up to more 

than 15K CPU cores. A test running with 1 million ZINC compounds docking in the active site 

of Thermus thermophilus gyrase B ATP-binding domain was completed in 1.4 hours on 15,408 

CPU cores. By extrapolation, VinaLC would allow docking of about 17 million flexible 

compounds to a single protein in 24 hrs on 15K CPU cores.  

MPI Performance analysis with mpiP. In order to probe the MPI performance, the VinaLC 

program was profiled using the mpiP library50, a lightweight, scalable MPI profiling tool. Two 

metrics were calculated by mpiP at various numbers of CPU cores: 1) the MPI time percentages 
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for the master and slave processes and 2) the aggregate MPI time of the master and slave 

processes. The MPI time percentage is plotted against the number of the CPU cores in Figure 3d. 

For each calculation there is only one master process and the rest of the large number of 

processes are slaves. Thus, the average MPI time percentage of both master and slave processes 

are close to that of the slave processes, which results in the red line almost overlapping with 

green one in Figure 3d. With the increase of CPU cores, the master process must deal with more 

slave processes and handle the data output and input more frequently. The time percentage of the 

master process spent on the MPI operations decreases steadily, which is due to the increased 

burden on the master process, such as, compressing the output results, saving the docking poses, 

and logs. When the number of slave processes is small, the master process is more readily 

responsive to the requests of the slave processes. However, when the number of slave processes 

increases, the slave processes spend more time waiting for the master to allocate docking 

calculations. Therefore, the MPI time percentage of slave processes increases. The average MPI 

time percentage is measured to be 3.94% for 15408 CPU cores.  

Considering the computing time for MPI activity alone, the aggregate MPI time was calculated 

at various numbers of CPU cores. The two MPI_recv calls colored in blue and green (Figure 2), 

master process checking the available free slave process and slave process receiving a job flag 

from the master process, have accounted for more than 99% of aggregate MPI time of all 11 MPI 

send/recv calls. When the test case runs on 600 CPU cores, 83.78% of MPI time has been spent 

on the master process checking the available free slave processes, and 15.97% has been spent on 

the slave process receiving a job flag from the master process. The numbers are 55.32% (master 

checking free slave processes) and 44.33% (slave process receiving job flag) when the test case 

runs on 1200 CPU cores. As the number of CPU cores increases, the percentage of MPI time 
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spent on the master process checking the available free slave process decreases while the that of 

slave process receiving a job flag from the master process increases. When the test case runs on 

15408 CPU cores, only 0.53% of MPI time has been spent on the master process checking the 

available free slave process, and 99.07% has been spent on the slave process receiving a job flag 

from the master process. The MPI_send calls for docking data input and output are colored in 

purple and orange, respectively, (Figure 2) have totally accounted for less than 0.1% of MPI time 

although they have delivered almost 100% of the aggregate sent message. The MPI_send call for 

docking data output accounted for 90.76% of the aggregate sent message and that for docking 

data input is 9.24%. The use of the GZip format for output files has achieved a 7:1 compression 

ratio, which reduces the storage of results significantly. 

Program profiling with Open|Speedshop. To investigate time consumption on each functionality 

in the code, VinaLC was run with Open|Speedshop (OpenSS) profiling tool51. Due to the 

overhead of OpenSS, VinaLC ran on only 60 CPU cores with a smaller test case. The program 

was first profiled with the “PC sampling experiment” option in order to determine CPU time 

spent on each function. VinaLC spends 94.11% on the actually docking calculations and about 

5.52% on MPI operations. The function for pairwise energies and forces calculation in the Monte 

Carlo simulation is the most time-consuming step, which accounts for 31.89% of the calculation 

time. The second most time-consuming function is the ‘docking grids evaluation’ module that 

takes 14.40%. The function to carry out Hessian matrix calculation accounts for 4.34%. These 

results show that most of the computing time is spent on docking calculations. For rest of the 

functions,  each takes less than 5% of computing time. The program was then run with the “IO” 

option to detect amount of time on I/O system calls. The program spends 96.47% time to read, 
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3.07% to write, and 0.46% to close files. The total time of I/O system calls can be neglected as 

compared to the total compute time.   

Comparison to other parallel docking programs. Several other parallel docking programs have 

already been reported to run on high performance computing so that we can compare parallel 

performance of VinaLC to that of others. Compared to DOVIS, VinaLC can scale up to more 

than 15K CPU cores while DOVIS is limited to 256 CPU cores22. Our MPI parallel scheme is 

more efficient in communicating data and reduces the I/O activities so more CPU cores are 

exploited. Compared to the cloud computing, the MPI implementation reaches high scalability at 

the beginning of the calculations, utilizing the CPUs more efficiently, while it takes time for 

cloud computing to utilize all CPUs. Autodock4.lga.MPI30 by Collignon et. al. uses a pure MPI 

parallel scheme. Although Autodock4.lga.MPI scales up to 8192 CPUs, it has an overhead of 

16.3%30.  VinaLC can scales very well to 15408 CPUs with an overhead of only 3.94%. This 

scale up translates into Autodock4.lga.MPI completing 300K small flexible compounds docking 

calculations on 8192 CPUs in 24 hours.  In contrast, VinaLC can finish 17 million flexible 

compound docking calculations on 15408 CPUs in the same 24 hours. These advantages are 

achieved by using a mixed MPI and multithreading parallel scheme. 

 

VinaLC accuracy is comparable with other docking programs. 

X-ray ligand re-docking accuracy study. As mentioned in the method section, the DUD data set 

has been employed to validate the accuracy of VinaLC. One way to test a docking program is to 

perform the re-docking of X-ray structures. The X-ray ligands were taken out and then docked 

back to the active sites of the protein targets in the DUD data set. The RMSD values between the 

top scoring pose for a ligand and its X-ray conformation were calculated. The mean of RMSD 
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values of the top scoring poses is 2.76 Å with a standard deviation of 3.27 Å. The median value 

is 1.20 Å. A best pose with the smallest RMSD value in the top ten scoring poses was also 

determined. 10 out of 40 targets have the identical top scoring pose and best pose. The mean of 

RMSD values of the best poses is 2.03 Å with a standard deviation of 2.27 Å. The median value 

is 1.10 Å. The cutoff RMSD value for good and bad docking poses is 2.0 Å. Judging from the 

mean value and median would result in totally different conclusions. Evaluating the docking 

program by mean and median RMSD values apparently becomes an issue. For example, target 

ERantagonist (estrogen receptor antagonist) and COMT (catechol O-methyltransferase) have 

abnormally large RMSD values that exceed 10 Å. Such a few very poorly docked poses are the 

primary factor responsible for the large mean RMSD value.  

Accuracy study with cumulative RMSD distribution plot. As shown in the previous section, a few 

abnormally large RMSD values will bring the bias to the mean and median values of RMSD. To 

avoid such bias, a cumulative RMSD distribution plot was used to demonstrate a complete 

picture of RMSD distribution (Figure 4). Firstly, the RMSDs for all 40 targets were sorted in 

ascending order of RMSD values. The fractions of the complexes were calculated in a 

cumulative way with increasing of the RMSD values. The plot was generated with fraction of the 

complexes in the y-axis versus its RMSD value in the x-axis. A vertical dashed line was plotted 

at RMSD value of 2 Å to illustrate the cutoff value for the RMSD. As shown in the Figure 4, 

64.4% of the top scoring poses was identified with RMSD under the 2.0 Å cutoff while that for 

the best poses is 70.0%. For the best poses, all the targets have RMSD values within 10 Å and 

about half of the targets have RMSD values less than 1 Å. Overall, the VinaLC docking program 

performed well for re-docking of the X-ray ligand back into the active site of the X-ray structure 

with the default setting for the grid sizes and exhaustiveness (=8).  
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Comparison of cumulative distribution plots generated by different programs. The X-ray ligand 

re-docking accuracy of different docking programs can be compared using cumulative 

distribution plot. Cumulative distribution plots for a different data set with 68 protein-ligand 

complexes have been generated by Cross and co-workers41. Although they were using a 

completely different data set, the cumulative distribution plot still allows a relatively fair 

comparison of the VinaLC program from our study and the docking programs employed in their 

study because of the cumulative feature of the plots. We found that the performance of VinaLC 

in terms of cumulative distribution plot is better than the FlexX and PhDOCK, is comparable to 

the DOCK and Surflex, and is very close to the GLIDE. 

The initial settings of the docking program are crucial to the docking accuracy. After visually 

inspecting the docking results for the target COMT, we found that the abnormally large RMSD 

value was due to the ligand being docked outside of the binding pocket. We tried to either reduce 

the grid sizes or enlarge the exhaustiveness value to allow more extensive conformational 

sampling. Both approaches reduced the RMSD values drastically. For example, using a smaller 

grid box with dimensions of 22×22×22 Å for target COMT reduces the RMSD value from 12.86 

to 1.13 Å. Doubling the exhaustiveness value also reduces the RMSD value to 0.79 Å. In 

general, reducing the grid sizes will constrain the ligand to be docked within the active site and 

enlarging the exhaustiveness will increase the conformation searching time. Both result in 

obtaining significantly better poses. Thus, carefully defining the settings of the VinaLC docking 

program is crucial to obtaining successful results.  

Docking enrichment performance. The Receiver Operating Characteristic (ROC) plot was 

employed in this study for measuring virtual screening performance52-54. The ROC method can 

effectively differentiate two populations so that it can be applied to differentiate the active 
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ligands against the non-active decoys. The plots of ROC curves for all 40 targets in the DUD 

data set are shown in Figure 5. The ROC plots are arranged in sequence of 8 nuclear hormone 

receptors, 9 kinases, 3 serine proteases, 4 metalloenzymes, 2 folate enzymes, and 14 other 

targets38, which are included in the DUD data set. The ROC plots are similar to the ligand 

enrichment plots38; however, the x-axis is the fraction of the decoy in the ROC curve plot rather 

than the percentage rank of the ligand in the whole data set combining ligand and decoy. For a 

target, the docking program can calculate the docking scores for both ligands and decoys. Both 

ligands and decoys were sorted according to the significance of docking scores. From high to 

low scores, one can calculate the fraction of a selected ligand by dividing its rank (within all 

ligands) by the total number of ligands (Ith/Nligands). The fraction of a selected decoy was 

calculated in the same way as that of ligand. Then ligands and decoys were mixed and sorted 

again. If there are any ligands ranking ahead of a given decoy, the largest fraction number of 

these ligands is correspond to the fraction number of selected decoy. If not, zero corresponds to 

the fraction of the selected decoy. The ROC plot uses the fraction of each ligand and decoy as 

the y-axis and x-axis, respectively. The curve of ROC plot is always a monotonically increasing	  

line. 

The ROC plots for all 40 targets have revealed their docking enrichment performance. The AR 

(androgen receptor) target is the first ROC plot in Figure 5. The red line is the staggered plot of 

the fraction of the selected active ligand versus that of selected decoy. If the docking program 

works well for a target, the docking scores for active ligands will be more significant than those 

of non-active decoys. In the plot, the fraction of the selected ligand will always be larger than its 

corresponding fraction of select decoy, and the red line in the plot will always be above and to 

the left of the black diagonal line. The plot demonstrates that VinaLC has good enrichment 
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performance for the AR target. The ROC plots show that VinaLC enriches the data of 28 out of 

40 targets where most of the red line is above the diagonal line. Thus, VinaLC has good 

enrichment performance on 70% targets in the DUD data set. However, if the docking program 

prefers the decoys rather than the active ligands, the red line will be under the diagonal line. The 

ROC plots have shown that three targets, ACE (angiotensin-converting enzyme), AmpC (AmpC 

β-lactamase), and NA (neuraminidase), with the ROC curve under the diagonal lines. It indicates 

that VinaLC has bad enrichment performance in these targets. There are six targets, FGFr1 

(fibroblast growth factor receptor kinase), PDGFrb (platelet derived growth factor receptor 

kinase), ADA (adenosine deaminase), GPB (glycogen phosphorylase β), HIVRt (HIV reverse 

transcriptase), and HMGA (hydroxymethylglutaryl-CoA reductase), have red lines almost 

overlapping with the diagonal lines, which means VinaLC has no preference in selecting ligands 

over decoys and thus the ranking of ligands is near a random selection. The rest of the plots are 

more complicate to interpret. For example, the COMT target has a high fraction of active ligands 

selected when there is a low fraction of decoys; however, a low fraction of active ligands are 

selected when there is a high fraction of decoys. This indicates that VinaLC has better 

enrichment performance when a low fraction of decoys exist. This is desirable outcome for early 

recovery of active ligands because people only care about a few top score docking poses (usually 

0.5-5% of the whole database) during the virtual screening. 

Virtual screening performance analysis. The Area Under the Curve (AUC) for the ROC is a 

crucial factor to evaluating the virtual screening performance. The value of AUC ranges from 0.0 

to 1.0, in which 0.5 means random selection. In this study, the AUC values were categorized into 

four ranges. Out of a total of 40 targets, 8 targets have AUC values ranging from 0.75 to 1.0, 

which is considered significant enrichment. Twenty-two targets are in the range of 0.55 ~ 0.75, 
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which is considered good enrichment. Thus, about 75% targets (30 out of 40) in the DUD data 

set have enrichment. 8 targets are in the range of 0.45 ~ 0.55 which indicates random selection. 

Two targets (AmpC and NA) have enrichment worse than random selection with AUC values 

below 0.45. The mean ROC AUC of 40 DUD targets is 0.64 for the VinaLC program, which is 

better than DOCK, FlexX,  ICM37, and PhDOCK55, but worse than GLIDE and Surflex56,57 (Table 

1). The range of ROC AUC values is 0.60 to 068 at 95% confidence interval for VinaLC docking 

program.  

Excellent early recovery of actives. Early recovery of actives is desirable for a docking program. 

The large AUC values are often obtained for the cases where early recovery of actives is good. 

However, the small AUC values do not necessarily mean that the early recovery of actives is not 

good. As pointed out in the previous section, for the COMT target, VinaLC actually has very 

good early recovery of actives although its AUC value are only 0.48, even below the random 

selection AUC value of 0.5. Thus, the mean ROC enrichment factors have been calculated at 

0.5%, 1.0%, 2.0% 5.0% and 10% of the screening database (Table 1). As expected the mean 

ROC enrichment decreases as the percentage of the screening database increases due to the 

monotonically increasing curve of the ROC plot. Compared to various docking programs, 

VinaLC has a fairly high mean ROC enrichments at low percentages. At 0.5 %, VinaLC has a 

mean ROC enrichment of 19.9 which is better than most the docking programs shown in the 

table except GLIDE SP and Surflex Ringflex. This indicates that VinaLC has very good early 

recovery of actives. 

The DUD targets can be categorized into several enzyme families, including nuclear hormone 

receptors, kinases, serine proteases, folate enzymes, metalloenzymes, and other enzymes38. From 

the standpoint of enzyme families, VinaLC program has very good enrichment performance for 
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nuclear hormone receptors except targets PRs, serine proteases, and folate enzymes. For the 

kinases, three out of nine targets have near random selections. For metalloenzymes, the ADA 

target has near random selection. The remaining three metalloenzymes have good early recovery 

of actives. 

Through the X-ray ligand re-docking and enrichment studies, the performance of VinaLC is 

demonstrated to be better than DOCK, FlexX, ICM, and PhDOCK, and is not as good as GLIDE 

and Surflex. Studies31,36 have also shown that VinaLC has many advantages over AutoDock 4. 

Thus, in terms of accuracy the VinaLC docking program outperforms most of mainstream 

docking programs. Considering accuracy and speed, the parallel version of VinaLC program has 

many advantages over the other docking programs.  

 

Conclusion	  
 

In this study, the original AutoDock Vina molecular docking program has been converted to a 

parallel VinaLC program using a hybrid scheme of MPI and multithreading. The MPI parallel 

implementation employed a master-slave approach to expedite docking calculation assignment 

from master to slave. The docking input/output data were packed to reduce the overhead of MPI 

activity. The output data was saved in GZip format, which has achieved high compression ratio 

to save the disk space. The program is portable to various types of HPC machines including 

petascale platforms. A parallel performance analysis of VinaLC program has shown that it can 

scale up to more than 15K CPU cores at very low overhead. The profiling of program has 

demonstrated that most computing time has been spent on the actual docking calculations. The 

percentage of I/O activity in the total computing time is negligible. The overall parallel 
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performance of VinaLC is much better than other parallel docking programs, such as, DOVIS, 

Autodock4.lga.MPI.  

The accuracy of VinaLC docking program has been validated against DUD data set. The RMSD 

values between X-ray ligands and re-docking top poses for most targets in DUD data set are 

small. The ROC plots have demonstrated that VinaLC has good enrichment performance on 

most targets. An analysis on the mean ROC enrichment factors calculated at various percentage 

of the screening database indicates VinaLC has very good early recovery of actives. The mean 

ROC AUC has shown that VinaLC program is better than DOCK, FlexX, ICM, and PhDOCK, 

but not as good as GLIDE and Surflex. In summary, VinaLC docking program has outperformed 

most of mainstream docking programs in terms of docking accuracy. 

The current MPI and multithreading hybrid parallel scheme has been successfully deployed on 

petascale supercomputers by using only one master node. The master node can handle all the 

input and output data on the petascale HPC machines. With explosive growth in biological data 

and computer power, we have expected such parallel scheme can be stretched to its limit in the 

future. If so, the single master parallel scheme can be easily converted to multiple masters, 

together with usage of the parallel I/O, which should be able to overcome such limitation when 

the exascale high performance computing is available. 
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Figure 1 Mixed Parallel Scheme 
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Figure 2 MPI Scheme. Pairs of MPI calls were labeled by different colors. Program loops were 
designated as black boxes with grey background. Nrec, Nlig, and Nproc are the number of the 
receptors, ligands, MPI processes, respectively. 
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Figure 3 Parallel performance analysis of the VinaLC program on 600, 1200, 2400, 6000, 12000, 
and 15408 CPU cores. (a) MPI wall time versus number of the CPU cores. (b) Average CPU 
time per docking run versus number of the CPU cores. The dashed line is the ideal average CPU 
time per docking run. (c) The speed up of VinaLC docking calculation at different number of the 
CPU cores. The diagonal dashed line is the ideal scale-up. (d) The MPI time percentages for 
average, master, and slave processes at different number of CUP cores calculated by linking 
program to mpiP library. The test case for each simulation is a collection of 100K ligands 
selected from ZINC database, which were docked into active site of Thermus thermophilus 
gyrase B ATP-binding domain. 
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Figure 4 Cumulative RMSD distribution plot for the DUD data set. X-ray ligand conformation 
was used as input. The blue line is the RMSD between the top scoring pose and the X-ray 
structure while the red line is that of the best pose. 
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Figure 5	  ROC plots for the 40 targets in the DUD data set. Diagonal lines indicate random 
performance. 
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Table 1 Statistical Results for Virtual Screening Using DUD data set.	  

	   	  

    Mean ROC Enrichments 

Program Source Mean ROC  
AUC 

95% CI 0.5% 1.0% 2.0% 5.0% 10.0% 

DOCK Ref41 0.55 0.50-0.59 18.8 12.3 8.2 4.7 3.0 

FlexX Ref41 0.61 0.54-0.67 13.7 9.8 7.2 4.4 3.1 

GLIDE 
HTVS 

Ref41 0.72 0.67-0.77 18.9 14.8 10.7 6.5 4.3 

ICM Ref41 0.63 0.58-0.68 16.9 12.7 8.0 4.6 3.1 

PhDOCK Ref41 0.59 0.54-0.64 16.9 11.3 7.7 4.1 2.8 

Surflex Ref41 0.66 0.61-0.70 14.3 11.1 7.9 4.9 3.4 

GLIDE SP Ref41 0.77 0.71-0.82 21.8 16.7 12.2 7.9 5.1 

Surflex 
Ringflex 

Ref41 0.72 0.67-0.77 20.0 16.2 12.0 6.8 4.3 

VinaLC  0.64 0.60-0.68 19.9 11.4 9.0 6.1 3.2 
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Supporting Information 
 
Table S1: List of DUD targets and RMSD of top scoring poses and best poses. 

    Vina Docking Pose RMSD (Å) 
Protein PDB ID  Ligands # Decoys # Top scoring pose Best pose 
AR  1xq2  74 2630 0.47 0.47 
ERagonist  1l2i  67 2361 0.60 0.60 
ERantagonist  3ert  39 1399 10.43 9.53 
GR  1m2z  78 2804 0.31 0.31 
MR  2aa2  15 535 0.26 0.26 
PPARg  1fm9  81 2910 3.2 2.38 
PR  1sr7  27 967 0.49 0.49 
RXRa  1mvc  20 708 0.22 0.22 
CDK2  1ckp  50 1780 7.46 3.62 
EGFr  1m17  416 14914 1.55 1.55 
FGFr1  1agw  11 4216 1.03 1.03 
HSP90  1uy6  24 861 0.68 0.68 
P38  MAP  1kv2  234 8399 0.60 0.60 
PDGFrb  model  157 5625 0.61 0.61 
SRC  2src  162 5801 6.15 5.66 
TK  1kim  22 785 5.63 5.25 
VEGFr2  1vr2  74 2647 1.23 1.23 
FXa  1f0r  142 5102 1.55 0.46 
thrombin  1ba8  65 2294 2.27 1.99 
trypsin  1bju  43 1545 0.69 0.69 
ACE  1o86  49 1728 7.40 7.40 
ADA  1stw  23 822 1.72 1.72 
COMT  1h1d  12 430 12.81 3.07 
PDE5  1xp0  51 1810 0.78 0.78 
DHFR  3dfr  201 7150 3.55 2.79 
GART  1c2t  21 753 2.08 1.17 
AChE  1eve  105 3732 1.16 1.16 
ALR2  1ah3  26 920 6.29 5.77 
AmpC  1xgj  21 734 6.03 1.67 
COX-1  1q4g  25 850 0.42 0.42 
COX-2  1cx2  349 12491 5.60 5.60 
GPB  1a8i  52 1851 0.24 0.24 
HIVPR  1hpx  53 1888 9.69 4.20 
HIVRT  1rt1  40 1439 4.27 4.27 
HMGR  1hw8  35 1242 1.31 1.31 
InhA  1p44  85 3043 0.27 0.27 
NA  1a4g  49 1745 0.46 0.46 
PARP  1efy  33 1178 0.51 0.51 
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PNP  1b8o  25 884 0.19 0.19 
SAHH  1a7a  33 1159 0.37 0.37 

 
* Abbreviations: ACE, angiotensin-converting enzyme; AChE, acetylcholinesterase; ADA, 

adenosine deaminase; ALR2, aldose reductase; AmpC, AmpC β-lactamase; AR, androgen 
receptor; CDK2, cyclindependent kinase 2; COMT, catechol O-methyltransferase; COX-1, 
cyclooxygenase-1; COX-2, cyclooxygenase-2; DHFR, dihydrofolate reductase; EGFr, 
epidermal growth factor receptor; ER, estrogen receptor; FGFr1, fibroblast growth factor 
receptor kinase; FXa, factor Xa; GART, glycinamide ribonucleotide transformylase; GPB, 
glycogen phosphorylase β; GR, glucocorticoid receptor; HIVPR, HIV protease; HIVRT, HIV 
reverse transcriptase; HMGR, hydroxymethylglutaryl-CoA reductase; HSP90, hu- man heat 
shock protein 90; InhA, enoyl ACP reductase; MR, mineralocorticoid receptor; NA, 
neuraminidase; P38 MAP, P38 mitogen activated protein; PARP, poly(ADP-ribose) 
polymerase; PDE5, phosphodiesterase 5; PDGFrb, platelet derived growth factor receptor 
kinase; PNP, purine nucleoside phosphorylase; PPARg, peroxisome proliferator activated 
receptor γ; PR, progesterone receptor; RXRa, retinoic X receptor α; SAHH, S-adenosyl-
homocysteine hydrolase; SRC, tyrosine kinase SRC; TK, thymidine kinase; VEGFr2, 
vascular endothelial growth factor receptor; ATP, adenosine-5’-triphosphate; β-GAR, β-
glycinamide ribonucleotide; NAD(P)-(H), nicotinamide adenine dinucleotide (phosphate)-
(reduced); PLP, pyridoxal-5’-phosphate. 

 


